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Abstract: We compute the finite temperature Casimir energy for massive scalar field with

general curvature coupling subject to Dirichlet or Neumann boundary conditions on the

walls of a closed cylinder with arbitrary cross section, located in a background spacetime

of the form Md1+1 × N n, where Md1+1 is the (d1 + 1)-dimensional Minkowski spacetime

and N n is an n-dimensional internal manifold. The Casimir force acting on a piston

moving freely inside the closed cylinder is derived and it is shown that it is independent

of the regularization procedure. By letting one of the chambers of the cylinder divided by

the piston to be infinitely long, we obtain the Casimir force acting on two parallel plates

embedded in the cylinder. It is shown that if both the plates assume Dirichlet or Neumann

boundary conditions, the strength of the Casimir force is reduced by the increase in mass.

Under certain conditions, the passage from massless to massive will change the nature of

the force from long range to short range. Other properties of the Casimir force such as

its sign, its behavior at low and high temperature, and its behavior at small and large

plate separations, are found to be similar to the massless case. Explicit exact formulas

and asymptotic behaviors of the Casimir force at different limits are derived. The Casimir

force when one plate assumes Dirichlet boundary condition and one plate assumes Neumann

boundary condition is also derived and shown to be repulsive.
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1 Introduction

In the endeavor to solve some fundamental problems in physics, such as the unification of

fundamental forces and the dark energy and cosmological constant problem, it has been

proposed that we should consider higher dimensional spacetime. For example, string the-

ory [1] predicts that we live in spacetime of ten or eleven dimensions, where the extra six or

seven space dimensions are curled up to a tiny invisible compact manifold. Therefore, there

is a strong motivation to study physics in spacetimes with extra dimensions. Since Casimir

effect is an important quantum effect, the influence of extra dimensions on Casimir effect

becomes an important issue. The Casimir effect in spacetime with extra dimensions was

considered in the works [2–17]. The role of Casimir effect in stabilizing extra dimensions

was discussed in [18–24]. The possible role of Casimir effect as cosmological constant re-

sponsible for the observed dark energy was considered in [10, 25–30]. In [4, 5], the Casimir

effect for massless scalar field in Kaluza-Klein spacetime of the form M3+1 × N n, where

M3+1 is the (3+1)-dimensional Minkowski spacetime and N n is an n-dimensional internal

manifold, was considered in the piston setting. In [14, 15], we extended the results of [4, 5]

and considered the finite temperature correction to the Casimir effect. In the work [16], the
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Figure 1. A movable piston inside a closed cylinder divides the cylinder into two chambers.

Casimir effect due to massive scalar field with general curvature coupling constant subject

to Robin boundary conditions in spacetime of the form Md1+1 ×N n, where Md1+1 is the

(d1 + 1)-dimensional Minskowski spacetime, was considered. In this paper, we generalize

the work of [16] by taking into account the temperature correction. However, we restrict

ourselves to only consider either Dirichlet or Neumann boundary conditions, or combi-

nations of these two conditions. We study in detail the influences of the mass and the

temperature corrections to the Casimir effect.

In the studies of Casimir effects, one of the most popular geometric configurations is

the infinite parallel plate configuration since this configuration is mathematically tractable

for obtaining explicit exact results. In this article, we consider a more general setup, where

the parallel plates has finite instead of infinite cross section. To avoid the divergence on

the boundary of the plates, we consider the case where the two parallel plates is embedded

orthogonally in an infinitely long cylinder of arbitrary finite cross section. In the three di-

mensional case, such a setup has been considered for example in [31]. In practice, one should

consider the parallel plates being embedded in a finite cylinder and take the limit where one

end of the cylinder is moved to infinite distance away. Since we are only concerned with the

Casimir force acting on one of the plates, one can treat the other plate as fixed. This setup

has become fashionable nowadays, and is known as the piston setup [32]. In this setup, a pis-

ton is moving freely inside a closed cylinder and dividing it into two chambers (see figure 1).

The Casimir energy of this system is the sum of the Casimir energy of the left chamber,

the Casimir energy of the right chamber and the Casimir energy of the region exterior to

the cylinder. Except for some special cases such as when the cylinder is infinitely long and

the cross section of the cylinder is a disc or a ball, the Casimir energy of the region exterior

to the cylinder is not easy to be explicitly calculated. However, the Casimir energy outside

the cylinder does not have any effect on the piston inside the cylinder. The Casimir force

acting on the piston is the result of the interplay between the zero modes of the field in the

left and the right chambers. Since our main concern is the effect of the Casimir force acting

on the piston, we will not calculate the Casimir energy outside the cylinder. We would

only calculate the Casimir energies of the left and right chambers. For this, it is enough

to consider the Casimir energy inside a finite closed cylinder, with arbitrary cross section.

– 2 –
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In section 2, we give the basic formalisms needed for computing the Casimir energy

inside a closed cylinder due to a massive scalar field confined in a cylinder of arbitrary cross

section in the background spacetime of the form Md1+1×N n. In section 3, we compute the

Casimir energy using exponential cut-off method. Since a field should not have quantum

fluctuations in the infinite mass limit [33], we impose the condition that the Casimir energy

should vanish when the mass approaches infinity. We show that this condition allows us to

renormalize the Casimir energy and explicit formula of the renormalized Casimir energy is

given. The result can also be interpreted as the Casimir energy in a cylindrical universe.

In section 4, we consider the Casimir force in the piston setting. It is observed that the

regularization and renormalization procedures do not affect the Casimir force that acts on

the piston. More precisely, the Casimir force acting on the piston is the same whether we

compute it using the cut-off dependent Casimir energy or the renormalized Casimir energy.

From the results for piston, we deduce the formula for the Casimir force acting on a pair

of parallel plates embedded orthogonally in an infinitely long cylinder. By taking the limit

where the cross section of the cylinder is infinitely large, we obtain the finite temperature

Casimir force density acting on a pair of infinite parallel plates in a (d1 + 1)-dimensional

macroscopic Minkowski spacetime, with the presence of an n-dimensional internal manifold.

An advantage of our approach is that we obtain a formula for the Casimir force acting

on a pair of parallel plates embedded in an infinitely long cylinder as a series over elementary

functions, which enables us to derive some properties of the Casimir force easily. It is shown

that the Casimir force is attractive if both the plates assume Dirichlet boundary conditions

or both plates assume Neumann boundary conditions. Moreover, the magnitude of the

Casimir force is always a decreasing function of the plate separation a and the mass m.

The latter supports the assumption that quantum fluctuations vanish in the infinite mass

limit. In the case where the surrounding cylinder assumes Neumann boundary conditions,

we show that taking the massless limit will change the nature of the Casimir force from

short range to long range. For the influence of the internal manifold, it is shown that the

Casimir force is enhanced in the presence of extra dimensions. A stronger result shows

that the Casimir force is an increasing function of the size of the internal manifold. By

passing to the limit of infinite parallel plates, all these properties are preserved, although

some of them is not obvious from the formulas for the case of infinite parallel plates.

Besides the properties of the Casimir force, we derive explicit formulas for the asymp-

totic behaviors of the Casimir force in different limits, such as low and high temperature,

small plate separation, small mass and large cross section. It is shown that when the plate

separation is small, the Casimir force is dominated by terms that are independent of mass.

This shows that the effect of mass is less significant if the plate separation is small. On the

other hand, the leading order term of the Casimir force is linear in temperature in the high

temperature regime. In the case that the size of the internal manifold is comparable to the

plate separations, the behavior of the Casimir force is quite complicated and it depends

strongly on the geometry of the internal manifold.

Although we assume that the macroscopic spacetime is Minkowskian, the results of this

paper can be easily generalized to the case where the macroscopic spacetime is also curved.

By setting the size of the internal manifold to be zero, one can obtain the corresponding
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results for spacetime without extra dimensions.

Throughout this paper, we use the units where ~ = c = kB = 1 except for the figures.

2 Basic formalism

We consider a background (d+ 1)-dimensional spacetime of the form Md1+1 ×N n, where

Md1+1 is the (d1 + 1)-dimensional Minkowski spacetime, N n is an n-dimensional internal

space, which is assumed to be a compact connected manifold without boundary and d =

d1 + n. Let the spacetime metric be given by

ds2 =gµνdx
µdxν = ηαβdx

αdxβ −Gabdy
adyb,

µ, ν =0, 1, . . . , d; α, β = 0, 1, . . . , d1; a, b = 1, . . . , n,

where ηαβ = diag (1,−1, . . . ,−1), ya = xd1+a for a = 1, . . . , n and Gabdy
adyb is a Rieman-

nian metric on N n. In this article, we are interested in studying the finite temperature

Casimir force acting on a pair of parallel plates due to a massive scalar field ϕ(x) satisfying

the equation of motion
(

1
√

|g|
∂µ

√

|g|gµν∂ν +m2 + ξR

)

ϕ(x) = 0, (2.1)

where R is the scalar curvature of the background spacetime and ξ is a coupling constant

— ξ = 0 corresponds to minimal coupling and ξ = (d − 1)/4d corresponds to conformal

coupling. According to [4], a correct approach to this problem is the piston setup (see

figure 1), where we first compute the Casimir force acting on a piston moving freely inside

a closely cylinder and then take the limit where one end of the cylinder is moved to infinity.

Notice that for the piston system, the Casimir energy is the sum of the Casimir energy of

the left chamber, the Casimir energy of the right chamber and the Casimir energy of the

region outside the cylinder [32], i.e.,

Episton
Cas = Eleft

Cas + Eright
Cas + Eout

Cas. (2.2)

However, as pointed out in [32], the Casimir energy outside the cylinder does not contribute

to the Casimir force acting on the piston since the region outside the cylinder does not have

contact with the piston. On the other hand, the computation of the Casimir energy outside

the cylinder is a highly nontrivial issue for cylinder of arbitrary cross section. Therefore

we would not attempt to carry out this computation here. For the Casimir energies in the

left and right chambers, it suffices for us to consider the Casimir energy Ecyl
Cas(L) inside a

closed cylinder of the form cyl = [0, L] × Ω × N n, where L is the length of the cylinder

and Ω is a simply connected domain in R
d1−1. The Casimir energies of the left and right

chambers are then given by Eleft
Cas = Ecyl

Cas(a) and Eright
Cas = Ecyl

Cas(L− a) respectively.

In this article, we will consider both the homogeneous and the mixed boundary condi-

tions. For the homogeneous boundary conditions, the walls of the cylinder and the piston

both assume Dirichlet boundary conditions or both assume Neumann boundary condi-

tions. In the limit when one end of the cylinder is moved to infinite distance away, we
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obtain a configuration equivalent to two Dirichlet plates embedded in a Dirichlet cylin-

der, or two Neumann plates embedded inside a Neumann cylinder. For the homogeneous

boundary conditions, all the walls of the cylinder constituting the left (right) chamber as-

sume the Dirichlet boundary condition or all assume the Neumann boundary conditions.

If the field ϕ(x) satisfies Dirichlet boundary conditions on all the walls of the cylinder

cyl = [0, L] × Ω ×N n, the eigenfunctions satisfying (2.1) are given by

ϕk,j,l(x) = e−iωk,j,lt sin
πkx1

L
φD;j(x

2, . . . , xd1)Φl(y), (2.3)

where k, j ∈ N, l ∈ Ñ = N ∪ {0}. The function φD;j(x
2, . . . , xd1) is an eigenfunction of the

Laplace operator with Dirichlet boundary conditions on Ω, i.e.,

−
d1
∑

i=2

∂2

∂(xi)2
φD;j(x

2, . . . , xd1) =ω2
Ω,D;jφD;j(x

2, . . . , xd1),

φD;j |∂Ω =0.

The function Φl(y) is an eigenfunction of the operator −∆G−ξRG = −
√
G

−1
∂a

√
GGab∂b−

ξRG, (RG = −R is the scalar curvature of the metric Gabdy
adyb) on N n with eigenvalue

ω2
N ;l, i.e.,

− (∆G + ξRG)Φl(y) = ω2
N ;lΦl(y).

The eigenfrequency ωk,j,l is given by

ωk,j,l =

√

(

πk

L

)2

+ ω2
Ω,D;j + ω2

N ;l +m2.

Since Ω is simply connected, the eigenvalues ω2
Ω,D;j are all nonzero.

If the field ϕ(x) satisfies Neumann boundary conditions on all the walls of the cylinder

cyl = [0, L] × Ω ×N n, the eigenfunctions are

ϕk,j,l(x) = e−iωk,j,lt cos
πkx1

L
φN ;j(x

2, . . . , xd1)Φl(y), (2.4)

where k, j, l ∈ Ñ = N ∪ {0}. The function φN ;j(x
2, . . . , xd1) is an eigenfunction of the

Laplace operator with Neumann boundary conditions on Ω, i.e.,

−
d1
∑

i=2

∂2

∂(xi)2
φN ;j(x

2, . . . , xd1) =ω2
Ω,N ;jφN ;j(x

2, . . . , xd1),

∂φN ;j

∂n

∣

∣

∣

∣

∂Ω

=0,

where n is a unit vector perpendicular to ∂Ω. By convention, φN ;0(x
2, . . . , xd1) is the

constant function with zero eigenvalue. For the eigenvalues ω2
N ;l, we assume that ω2

N ;l ≥ 0

and there are exactly κ of them that are equal to zero.

For the mixed boundary conditions, we consider two types. For the first type, the field

satisfies Dirichlet boundary conditions on the walls of the cylinder and Neumann boundary

– 5 –
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conditions on the piston. For the second type, the field satisfies Neumann boundary condi-

tions on the walls of the cylinder and Dirichlet boundary conditions on the piston. In the

limit where one plate is moved to infinity, we obtain a configuration equivalent to a pair

of parallel plates, one assumes Dirichlet boundary condition and one assumes Neumann

boundary condition, embedded in a Dirichlet or a Neumann cylinder. For the first type of

the mixed boundary conditions, we have to consider the Casimir energy inside the cylinder

cyl = [0, L] × Ω ×N n, where the field ϕ(x) satisfies Dirichlet boundary conditions on the

wall [0, L] × ∂Ω ×N n and the wall x1 = 0, and Neumann boundary condition on the wall

x1 = L. In this case, the eigenfunctions are obtained from (2.3) by replacing the function

sin πkx
L by sin

π(k− 1
2)x

L . For the second type of the mixed boundary conditions, we have to

consider the Casimir energy inside the cylinder cyl = [0, L]×Ω×N n, where the field ϕ(x)

satisfies Neumann boundary conditions on the wall [0, L] × ∂Ω ×N n and the wall x1 = 0,

and Dirichlet boundary condition on the wall x1 = L. In this case, the eigenfunctions are

obtained from (2.4) by replacing cos πkx
L by cos

π(k+ 1
2)x

L .

Before ending this section, we define the variables R and r by R = Vol(Ω)1/(d1−1)

and r = Vol(N )1/n which have the dimension of length to measure the size of the domain

Ω and the internal manifold N n. Throughout this article, we assume that the size r of

the internal manifold is smaller than any measurable length in the (d1 + 1)-dimensional

Minkowski spacetime. The re-scaled variables

ω′
Ω,∗;j =RωΩ,∗;j, ∗ = D or N,

ω′
N ;l =rωN ;l,

are dimensionless variables and are invariant under the re-scaling of the domain Ω and the

manifold N n.

3 The Casimir energy inside a cylinder

In this section, we compute the Casimir energy inside a closed cylinder of the form [0, L]×
Ω ×N n, which is needed for computing the Casimir energy of the left and right chambers

of the piston system figure 1.

3.1 Zero temperature Casimir energy

At zero temperature, the Casimir energy is defined naively as the sum of zero point energies:

ET=0
Cas (L) =

1

2

∑

ωk,j,l.

To take into account the homogeneous and mixed boundary conditions, we let

ωk,j,l =ωk,j,l(α, ∗;m) =

√

(

π(k + α)

L

)2

+ ω2
Ω,∗,j + ω2

N ;l +m2, k ∈ Ñ, j ∈ J∗, l ∈ Ñ,

where α = 1 for homogeneous Dirichlet boundary conditions, α = 0 for homogeneous

Neumann boundary conditions and α = 1/2 for mixed boundary conditions; ∗ = D (resp.

– 6 –
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∗ = N) when ϕ(x) assume Dirichlet (resp. Neumann) boundary conditions on the com-

ponent [0, L] × ∂Ω × N n of the boundary of the cylinder; JD = N and JN = Ñ. Using

exponential cut-off regularization, we define the cut-off dependent energy as

ET=0
Cas (L;λ) =

1

2

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

ωk,j,le
−λωk,j,l .

Using the same method as the massless case [15], we find that up to the term λ0, the

small-λ expansion of ET=0
Cas (L;λ) is given by

ET=0
Cas (L;λ) =

d−1
∑

i=0

Γ(d+ 1 − i)

Γ
(

d−i
2

) ccyl,α,∗;i(m)λi−d−1

− ψ(1) − log λ

2
√
π

ccyl,α,∗;d+1(m) +
1

2
FPs=− 1

2
ζcyl,α,∗(s;m),

(3.1)

where ccyl,α,∗;i(m) are the heat kernel coefficients defined so that

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

e−tω2
k,j,l =

M−1
∑

i=0

ccyl,α,∗;i(m)t
i−d
2 +O

(

t
M−d

2

)

as t→ 0+, (3.2)

ζcyl,α,∗(s;m) is the zeta function

ζcyl,α,∗(s;m) =

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

ω−2s
k,j,l,

and the finite part of a meromorphic function f(z) with at most simple pole at a point

z = z0 is defined by

FPz=z0f(z) = lim
z→z0

(

f(z) − Resz=z0f(z)

z − z0

)

.

As λ→ 0+, we see from (3.1) that the divergent part of the Casimir energy contains diver-

gence of order log λ and λ−i, i = 2, . . . , d+1, with coefficients depending on the coefficients

ccyl,α,∗;i(m), which can be expressed in terms of L, m and the geometric invariants of the

manifolds Ω and N n. In particular, the leading divergence

Γ(d+ 1)

Γ
(

d
2

) ccyl,α,∗;0(m)λ−d−1 =
Γ(d+ 1)

Γ
(

d
2

)

LVol(Ω)Vol(N n)

2dπ
d
2

λ−d−1

is called the bulk divergence and is usually subtracted away in the definition of Casimir

energy. The other divergences are called hypersurface divergences and regularization is

required to remove these divergences. A conventional method, known as zeta regular-

ization [34], set all the hypersurface divergences to zero and define the regularized zero

temperature Casimir energy to be

E
regζ ,T=0

Cas (L) =
1

2
FPs=− 1

2
ζcyl,α,∗(s;m) +

1

2
log µ2Ress=− 1

2
ζcyl,α,∗(s;m)

=
1

2
FPs=− 1

2
ζcyl,α,∗(s;m) − log µ

2
√
π
ccyl,α,∗;d+1(m),

(3.3)

– 7 –
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where µ is a normalization constant with dimension length−1. This is tantamount to

subtracting the divergent terms

d−1
∑

i=0

Γ(d+ 1 − i)

Γ
(

d−i
2

) ccyl,α,∗;i(m)λi−d−1 − ψ(1) − log(λµ)

2
√
π

ccyl,α,∗;d+1(m) (3.4)

from the cut-off dependent Casimir energy (3.1) and set λ = 0. However, for massive scalar

fields, this definition is not sufficient. Since a field should not have quantum fluctuations

in the limit of infinite mass [33], it is natural to renormalize the Casimir energy so that the

renormalized Casimir energy Eren
Cas vanishes when the mass m approaches infinity, i.e.,

Eren
Cas

m→∞−−−−→ 0.

To satisfy this condition, one need to extract the leading behavior of the Casimir energy

in (3.1) or (3.3) when the mass is large and subtract away those terms that give nontrivial

limits when the mass tends to infinity. Using the fact that

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

e−tω2
k,j,l =

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

e−tm2
exp

{

−t
(

[

π(k + α)

L

]2

+ ω2
Ω,∗,j + ω2

N ,l

)}

,

it is easy to show that the heat kernel coefficients ccyl,α,∗;i(m), i = 0, 1, 2, . . . at any mass can

be expressed as a polynomial in m2 with coefficients in terms of the heat kernel coefficients

ccyl,α,∗;d+1(0) when m = 0. More precisely,

ccyl,α,∗;i(m) =

[ i
2 ]
∑

j=0

(−1)j

j!
ccyl,α,∗;i−2j(0)m

2j .

Therefore, the divergent part of the Casimir energy (3.4) can be expressed as a polynomial

in m2. As a result, it has to be subtracted away in the renormalization procedure and

thus do not contribute to the renormalized Casimir energy. For the regular part of the

Casimir energy given by (3.3), the second term that proportional to ccyl,α,∗;d+1(m) would

not contribute to the renormalized Casimir energy for the same reason above. For the term

(1/2)FPs=− 1
2
ζcyl,α,∗(s;m), let

K̃(t) =
∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

exp

{

−t
(

[

π(k + α)

L

]2

+ ω2
Ω,∗,j + ω2

N ,l

)}

−
d+1
∑

i=0

ccyl,α,∗;i(0)t
i−d
2 .

It can be shown that

1

2
FPs=− 1

2
ζcyl,α,∗(s;m) =

ψ
(

−1
2

)

+ logm2

4
√
π

ccyl,α,∗;d+1(m)

+ D(m) − 1

4
√
π

∫ ∞

0
t−

3
2 e−tm2

K̃(t)dt,

(3.5)

where

D(m) = − 1

4
√
π

d+1
∑

i=0

ccyl,α,∗;d+1−i(0)m
iFPs=− i

2
Γ(s),

– 8 –
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and
1

4
√
π

∫ ∞

0
t−

3
2 e−tm2

K̃(t)dt
m→∞−−−−→ 0.

Therefore, as m → ∞,

1

2
FPs=− 1

2
ζcyl,α,∗(s;m) =

ψ
(

−1
2

)

+ logm2

4
√
π

ccyl,α,∗;d+1(m) + D(m) + o(1).

This implies that to obtain the renormalized Casimir energy that vanishes when m → ∞,

we should subtract away the term

d−1
∑

i=0

Γ(d+ 1 − i)

Γ
(

d−i
2

) ccyl,α,∗;i(m)λi−d−1 +
ψ
(

−1
2

)

− 2ψ(1) + log[λm]2

4
√
π

ccyl,α,∗;d+1(m) + D(m)

(3.6)

from the cut-off dependent Casimir energy (3.1). From (3.5), we then find that the renor-

malized Casimir energy is given by

Eren,T=0
Cas (L) =

1

2
FPs=− 1

2
ζcyl,α,∗(s;m) − ψ

(

−1
2

)

+ logm2

4
√
π

ccyl,α,∗;d+1(m) − D(m)

= − 1

4
√
π

∫ ∞

0
t−

3
2 e−tm2

K̃(t)dt.

(3.7)

To study the behavior of the renormalized Casimir energy with respect to the variation of

the plate separation L, we use the fact that for α = 0, 1/2, 1,

∞
∑

k=0

e−t
π2(k+α)2

L2 =
1

2

∞
∑

k=−∞

e−t
π2(k+α)2

L2 +
1

2
− α

=
L

2
√
π

∞
∑

k=−∞

t−
1
2 e2πikαe−

k2L2

t +
1

2
− α.

(3.8)

This implies that

ζcyl,α,∗(s;m) =
1

Γ(s)

∫ ∞

0
ts−1

∑

j∈J∗

∞
∑

l=0

e−t(ω2
Ω,∗,j+ω2

N ;l+m2)

×
{

L

2
√
π

∞
∑

k=−∞

t−
1
2 e2πikαe−

k2L2

t +
1

2
− α

}

dt

=

(

1

2
− α

)

ζΩ×N ,∗(s;m) +
L

2
√
π

Γ
(

s− 1
2

)

Γ(s)
ζΩ×N ,∗

(

s− 1

2
;m

)

+
2L√
πΓ(s)

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

e2πikα





kL
√

ω2
Ω,∗,j + ω2

N ;l +m2





s− 1
2

×Ks− 1
2

(

2kL
√

ω2
Ω,∗,j + ω2

N ;l +m2
)

,

(3.9)
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where Kν(z) is the modified Bessel function of second kind, and

ζΩ×N ,∗(s;m) =
∑

j∈J∗

∞
∑

l=0

(

ω2
Ω,∗,j + ω2

N ;l +m2
)−s

.

As a result, we have

Eren,T=0
Cas (L) =

1 − 2α

4
FPs=− 1

2
ζΩ×N ,∗(s;m)

+
L

8π

{

ψ

(

−1

2

)

Ress=−1 (Γ(s)ζΩ×N ,∗(s)) − FPs=−1 (Γ(s)ζΩ×N ,∗(s))

}

− ψ
(

−1
2

)

+ logm2

4
√
π

ccyl,α,∗;d+1(m) − D(m)

− 1

2π

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

e2πikα

√

ω2
Ω,∗,j+ω

2
N ;l+m

2

k
K1

(

2kL
√

ω2
Ω,∗,j+ω

2
N ;l +m2

)

.

(3.10)

Using (3.8), we also have

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

e−tω2
k,j,l =

(

L

2
√
π
t−

1
2 +

1

2
− α+ e.d.

)

×
(

M−1
∑

i=0

cΩ×N ,∗;i(m)t
i−d+1

2 +O
(

t
M−d+1

2

)

)

as t→ 0+,

where e.d. is the exponentially decay terms, and cΩ×N ,∗;i(m) are heat kernel coefficients

for an elliptic operator on Ω ×N . This implies that

ccyl,α,∗;i(m) =
L

2
√
π
cΩ×N ,∗;i(m) +

(

1

2
− α

)

cΩ×N ,∗;i−1(m). (3.11)

Therefore, we read from (3.10) that the renormalized Casimir energy can be written as a

linear polynomial in L, plus a term that decays exponentially as L approaches infinity, i.e.,

Eren,T=0
Cas (L) =Σ0 + Σ1L− 1

2π

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

e2πikα

√

ω2
Ω,∗,j + ω2

N ;l +m2

k

×K1

(

2kL
√

ω2
Ω,∗,j + ω2

N ;l +m2
)

.

(3.12)

3.2 Finite temperature Casimir energy

Now we take into account the temperature correction to the Casimir energy given by

T
∑

log
(

1 − e−ωk,j,l/T
)

. (3.13)

This summation is finite and no regularization is required. Therefore, the cut-off dependent

finite temperature Casimir energy is defined as

ECas(L;λ) =
1

2

∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

ωk,j,le
−λωk,j,l + T

∑

log
(

1 − e−ωk,j,l/T
)

.
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It is well known that this can be computed in terms of the finite temperature zeta function

given by

ζcyl,α,∗;T (s;m) =
∞
∑

k=0

∑

j∈J∗

∞
∑

l=0

∞
∑

p=−∞

e−t(ω2
k,j,l

+(2πpT )2).

More precisely (see [15]),

ECas(L;λ) =

d−1
∑

i=0

Γ(d+ 1 − i)

Γ
(

d−i
2

) ccyl,α,∗;i(m)λi−d−1

+
log[λµ] − ψ(1) − log 2 + 1

2
√
π

ccyl,α,∗;d+1(m)

− T

2

(

ζ ′cyl,α,∗;T (0;m) + log[µ2]ζcyl,α,∗;T (0;m)
)

.

(3.14)

For the renormalization, we observe that the temperature correction to the Casimir en-

ergy (3.13) vanishes when the mass m approach infinity. Therefore, the large-m leading

behavior of the cut-off dependent finite temperature Casimir energy (3.14) is the same as

the large-m leading behavior of the cut-off dependent zero temperature Casimir energy

given by (3.6). After subtracting away these large-m non-vanishing terms, we find that the

renormalized finite temperature Casimir energy is given by

Eren
Cas(L) = − T

2

(

ζ ′cyl,α,∗;T (0;m) + log[µ2]ζcyl,α,∗;T (0;m)
)

−
log
[

m
µ

]2
+ ψ(1)

4
√
π

ccyl,α,∗;d+1(m) − D(m).

(3.15)

As a remark, in the zeta regularization scheme, the regularized finite temperature Casimir

energy is defined as

E
regζ

Cas (L) = −T
2

(

ζ ′cyl,α,∗;T (0;m) + log[µ2]ζcyl,α,∗;T (0;m)
)

. (3.16)

This expression does not go to zero as the mass m approaches infinity. We would like to

remark that although the expression (3.15) for the renormalized Casimir energy is derived

for the case where the field is confined within a cylindrical cavity, this formula is in fact

valid for an arbitrary closed cavity. Similarly, the formula for the renormalized Casimir

energy at zero temperature given by (3.7) is also valid for any closed cavity. We would

also like to point out that the high temperature expansion of the zeta regularized finite

temperature Casimir energy for massive scalar field in manifolds with boundaries have been

obtained in [35–39].

Using the same method as in the derivation of (3.9) (see [15]), we find that

ζcyl,α,∗;T (0;m) =
ccyl,α,∗;d+1(m)

2
√
πT

,

ζ ′cyl,α,∗;T (0;m) =Λ0 + Λ1L+
∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

∞
∑

p=−∞

e2πikα

k

× exp
(

−2kL
√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2
)

,
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where Λ0 and Λ1 are independent of L, and Λ1 is given by

Λ1 = − ψ(1)

4πT
cΩ×N ,∗;d+1(m) +

1

4πT
FPs=−1 {Γ(s)ζΩ×N (s;m)}

+
2

π

∑

j∈J∗

∞
∑

l=0

∞
∑

p=1

√

ω2
Ω,∗;j + ω2

N ;l +m2

p
K1





p
√

ω2
Ω,∗;j + ω2

N ;l +m2

T



 .

Together with (3.11), we find that the renormalized Casimir energy (3.15) can be ex-

pressed as the sum of a linear polynomial in L plus a term that decays exponentially as L

approaches infinity, i.e.,

Eren
Cas(L) = Σ̃0 + Σ̃1L− T

2

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

∞
∑

p=−∞

e2πikα

k

× exp
(

−2kL
√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2
)

,

(3.17)

where

Σ̃1 =
1

8π

d+1
∑

i=0

[

FPs=− i
2
Γ(s)

]

cΩ×N ,∗;d+1−i(0)m
i

− 1

8π

{

FPs=−1 {Γ(s)ζΩ×N (s;m)} + log[m2]cΩ×N ,∗;d+1(m)
}

− T

π

∑

j∈J∗

∞
∑

l=0

∞
∑

p=1

√

ω2
Ω,∗;j + ω2

N ;l +m2

p
K1





p
√

ω2
Ω,∗;j + ω2

N ;l +m2

T



 .

(3.18)

Before ending this section, we would like to comment that it is easy to deduce from

the results above that the Casimir energy for mixed boundary conditions (α = 1/2)) are

related to the Casimir energy for homogeneous boundary conditions (α = 0 or 1) by

ECas

(

L;α =
1

2
, ∗ = D

)

=ECas (2L;α = 1, ∗ = D) − ECas (L;α = 1, ∗ = D) ,

ECas

(

L;α =
1

2
, ∗ = N

)

=ECas (2L;α = 0, ∗ = N) − ECas (L;α = 0, ∗ = N) .

(3.19)

3.3 Special case

Here we consider the special case where the cross section of the cylinder Ω is a rectangular

region [0, L2]×. . .×[0, Ld1 ] and the internal manifold N n is an n-torus T n — a product of n

circles with radius r1, . . . , rn respectively. Notice that the scalar curvature of the torus T n

is zero. The spectrum ω2
Ω,∗;j of the Laplace operator with Dirichlet or Neumann boundary

conditions on Ω is given by

(

πj2
L2

)2

+ · · · +
(

πjd1

Ld1

)2

, j = (j2, . . . , jd1) ∈
{

N
d1−1, if ∗ = D,

Ñ
d1−1, if ∗ = N,

– 12 –
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and the spectrum ω2
N ;l of the Laplace operator on T n is given by

(

l1
r1

)2

+ · · · +
(

ln
rn

)2

, l = (l1, . . . , ln) ∈ Z
n.

For simplicity, we only consider the cases where α = 0 or 1, i.e., all the walls of the

rectangular cavity [0, L1] × . . . × [0, Ld1 ] assume Dirichlet boundary conditions or all the

walls assume Neumann boundary conditions. The results for the case where α = 1/2 can

be obtained from the results for α = 0 or 1 by (3.19). The finite temperature zeta function

ζcyl,D/N ;T (m) can be written as a sum of inhomogeneous Epstein zeta function, i.e.,

ζcyl,D/N ;T (s;m) =2−d1

d1
∑

i=0

(∓1)d1−i
∑

1≤σ1<...<σi≤d1

× Zi+n+1

(

s;
π

Lσ1

, . . . ,
π

Lσi

,
1

r1
, . . . ,

1

rn
, 2πT ;m

)

,

where

Zj (s; a1, . . . , aj ;m) =
∑

(k1,...,kj)∈Zj

1

([k1a1]2 + · · · + [kjaj ]2 +m2)s
.

The properties of the inhomogeneous Epstein zeta function Zj (s; c1, . . . , cj ;m) have been

discussed quite extensively (see e.g. [40–43]). Using those properties, we find that the

renormalized Casimir energy Eren
Cas;D/N (L1) is given by

Eren
Cas;D/N (L1) = − [

∏n
l=1 rl]

2d1+1

d1
∑

i=0

(∓1)d1−i

π
i+1−n

2

m
i+n+1

2

×
∑

1≤σ1<...<σi≤d1





i
∏

j=1

Lσj





∑

(kσ1 ,...,kσi
,l1,...,ln,p)∈Zi+n+1\{0}

×





i
∑

j=1

[

Lσj
kσj

]2
+

n
∑

j=1

[πrjlj ]
2 +

[ p

2T

]2





− i+n+1
4

×K i+n+1
2



2m

√

√

√

√

i
∑

j=1

[

Lσj
kσj

]2
+

n
∑

j=1

[πrjlj ]
2 +

[ p

2T

]2



 .

(3.20)

The terms with p = 0 in (3.20) give the zero temperature Casimir energy. The sum of

the terms with σ1 ≥ 2 corresponds to the term Σ̃0 in (3.17) which is independent of L1.

The sum of the terms with σ1 = 1 and kσ1 = k1 = 0 corresponds to the term Σ̃1 in (3.17)

which is proportional to L1. The rest of the terms decay exponentially when L1 → ∞.
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4 The Casimir force acting on a piston or two parallel plates

4.1 The Casimir force acting on a piston embedded in a closed cylinder or on

two parallel plates embedded in an infinitely long cylinder

The Casimir force acting the piston is obtained by differentiating the Casimir energy of the

piston system (2.2) with respect to a, the position of the piston. As explained in section 2,

the Casimir energy of the region outside the cylinder does not contribute. The Casimir

force acting on the piston is the sum of the Casimir forces arise from the variations of the

Casimir energies in the left and right chambers:

FCas(a;L) = − ∂

∂a
(ECas(a) + ECas(L− a)) . (4.1)

From (3.17), we find that the contribution to the (renormalized) Casimir force from the

left chamber is given by

F ren, left
Cas (a) = − Σ̃1 − (−1)2αT

∑

j∈J∗

∞
∑

l=0

∞
∑

p=−∞

×

√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2

exp
(

2a
√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2
)

− (−1)2α
,

(4.2)

where Σ̃1 is a term independent of a given by (3.18). The contribution to the (renormalized)

Casimir force from the right chamber is negative the contribution from the left chamber,

with a replaced by L−a. As a result, the term Σ̃1 cancels out and we find that the Casimir

force acting on the piston is given by

FCas(a;L) = F∞
Cas(a) − F∞

Cas(L− a), (4.3)

where

F∞
Cas(a) = − (−1)2αT

∑

j∈J∗

∞
∑

l=0

∞
∑

p=−∞

×

√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2

exp
(

2a
√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2
)

− (−1)2α

(4.4)

can be interpreted as the limit of the Casimir force when the right chamber is infinitely long.

Since the difference between the cut-off dependent Casimir energy (3.14) and the renor-

malized Casimir energy (3.17) is given by (3.6), which by (3.11) is a linear function in L,

this implies that we will obtain the same result for the Casimir force whether we use the

cut-off dependent Casimir energy or the renormalized Casimir energy. In other words, the

Casimir force acting on the piston is independent of the regularization and renormalization

procedures employed.
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It is easy to deduce from (4.4) that the Casimir force for α = 1/2 is related to the

Casimir force for α = 0 or 1 by

FCas

(

a;L;α =
1

2
; ∗ = D/N

)

=2FCas (2a; 2L;α = 1/0, ∗ = D/N)

− FCas (a;L;α = 1/0, ∗ = D/N) ,

(4.5)

which also follows from (3.19).

The expression (4.4) is negative if α = 0 or 1 and positive if α = 1/2. Moreover, its

absolute value is a monotonically decreasing function of a. Therefore, if the quantum field

assumes either Dirichlet or Neumann boundary conditions on both the piston and the walls

of the cylinder, the Casimir force acting on the piston is an attractive force tending to pull

the piston towards the closer wall. If the quantum field assumes Dirichlet (resp. Neumann)

boundary conditions on the piston and Neumann (resp. Dirichlet) boundary conditions on

the walls of the cylinder, then the Casimir force acting on the piston is a repulsive force tend-

ing to restore the piston to its equilibrium position x1 = L/2. In both cases, the magnitude

of the Casimir force increases as the piston is moving away from the equilibrium position.

Eq. (4.4) can also be interpreted as the Casimir force acting on two parallel plates

embedded in an infinitely long cylinder with cross section Ω×N n. It shows that the Casimir

force between the plates is attractive if the field assumes the same boundary conditions

on the plates and is repulsive if the the field assumes different boundary conditions on the

plates, regardless of the boundary conditions assumed on the surrounding transversal wall.

Writing ωΩ,∗;j = ω′
Ω,∗;j/R and ωN ;l = ω′

N ;l/r, eq. (4.4) shows that when a/r or a/R or am

is large, the magnitude of the Casimir force decays exponentially. At high temperature T ,

eq. (4.4) shows that the leading term of the Casimir force is given by a term linear in T :

F∞,T≫1
Cas (a) ∼ −(−1)2αT

∑

j∈J∗

∞
∑

l=0

√

ω2
Ω,∗,j + ω2

N ,l +m2

exp
(

2a
√

ω2
Ω,∗,j + ω2

N ,l +m2
)

− (−1)2α
, (4.6)

and the remaining term decays exponentially. Notice that if we consider the contribution

to the Casimir force from the left chamber (4.2), then the result (A.1) of appendix A shows

that when T ≫ 1,

F ren, left
Cas (a) ∼ 1

4π

d−1
∑

i=0

Γ

(

i+ 2

2

)

ζR(i+ 2)cΩ×N ,∗;d−1−i(m)(2T )i+2 +O(T ). (4.7)

We observe that in general, there are terms of order T 2, T 3, . . . , T d+1. In particular, the

leading term is

F ren, left
Cas (a) ∼2d−1Γ

(

d+1
2

)

ζR(d+ 1)

π
cΩ×N ,∗;0(m)T d+1

=
Γ
(

d+1
2

)

ζR(d+ 1)

π
d+1
2

Vol(Ω ×N )T d+1,

which is the Stefan-Boltzmann term. Usually this term is subtracted away in the regular-

ization of the Casimir energy since it can be interpreted as the contribution to the vacuum
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energy in the absence of boundaries. However, besides the limiting case of infinite parallel

plates, there are still terms with order T 2, . . . , T d. Nevertheless, since these terms are inde-

pendent of a, they cancel the corresponding contributions from the right chamber and the

high temperature leading term of the Casimir force acting on the piston is a term linear

in T given by (4.6). This is usually called the classical term [45–48] due to the absence of

the Planck constant ~ in this term. In a recent work on Casimir effect of electromagnetic

field in three dimensional ideal metal rectangular box [49], it has been argued that the

terms of order T 2, . . . , T d+1 have to be subtracted away in order to be consistent with

thermodynamics. Here we find that in the piston scenario, such terms are naturally absent

due to the cancelation between the two sides of the plate.

For the low temperature asymptotic expansion of the Casimir force, we use the formula

(−1)2α−1
√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2

exp
(

2a
√

ω2
Ω,∗,j + ω2

N ,l +m2 + (2πpT )2
)

− (−1)2α

=
1

2
√
π

∂

∂a

{

a

∫ ∞

0
t−

1
2

∞
∑

k=1

e2πikα exp

{

−1

t

(

ω2
Ω,∗;j + ω2

N ,l + [2πpT ]2 +m2
)

− tk2a2

}

dt

}

(4.8)

and the formula
∞
∑

k=−∞

exp
(

−tk2
)

=
√
πt−

1
2

∞
∑

k=−∞

exp

(

−π
2k2

t

)

. (4.9)

These give

F∞
Cas(a) =

1

2π

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

∞
∑

p=−∞

× e2πikα

{

√

√

√

√

ω2
Ω,∗;j+ω

2
N ,l+m

2

[ka]2 +
[ p

2T

]2 K1

(

2

√

(

ω2
Ω,∗;j+ω

2
N ,l+m

2
)

(

[ka]2+
[ p

2T

]2
)

)

− 2k2a2
ω2

Ω,∗;j + ω2
N ,l +m2

[ka]2 +
[ p

2T

]2 K2

(

2

√

(

ω2
Ω,∗;j + ω2

N ,l +m2
)

(

[ka]2 +
[ p

2T

]2
)

)}

.

(4.10)

In the zero temperature limit, we obtain the zero temperature Casimir force from the terms

with p = 0:

F∞,T=0
Cas (a) =

1

2π

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

e2πikα

{

√

ω2
Ω,∗;j + ω2

N ,l +m2

ka
K1

(

2ka
√

ω2
Ω,∗;j + ω2

N ,l +m2
)

− 2
(

ω2
Ω,∗;j + ω2

N ,l +m2
)

K2

(

2ka
√

ω2
Ω,∗;j + ω2

N ,l +m2
)

}

,

(4.11)

which can also be derived directly from eq. (3.12). The temperature correction to the

Casimir force is the sum of the terms with p 6= 0 in (4.10). It goes to zero exponentially
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fast when T → 0. Using the identity K2(z) = K0(z) + 2K1(z)/z, we can rewrite the zero

temperature Casimir force (4.11) as

F∞,T=0
Cas (a) = − 1

2π

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

e2πikα

{

√

ω2
Ω,∗;j+ω

2
N ,l+m

2

ka
K1

(

2ka
√

ω2
Ω,∗;j+ω

2
N ,l+m

2
)

+ 2
(

ω2
Ω,∗;j + ω2

N ,l +m2
)

K0

(

2ka
√

ω2
Ω,∗;j + ω2

N ,l +m2
)

}

,

(4.12)

which shows manifestly that the zero temperature Casimir force is attractive if α = 0 or 1

and is repulsive if α = 1/2.

For the behavior of the Casimir force with respect to the variation of mass, we observe

that the function

x 7→ x

ex − 1

is a decreasing function. Therefore the magnitude of the Casimir force acting between a

pair of parallel plates embedded in an infinitely long cylinder (of arbitrarcy cross section)

is a decreasing function of m when α = 0 or 1. In other words, for a pair of parallel plates

with identical boundary conditions, the increase in mass reduces the Casimir effect. This

property cannot be obviously inferred from the expressions for the zero temperature Casimir

force given by (4.11) or (4.12). We see here the advantage of considering the Casimir force

at any finite temperature. It enables us to derive some properties of the Casimir force

from the expression (4.4), which cannot be derived directly from the expression for zero

temperature Casimir force (4.11) or (4.12).

Notice that when the mass m decreases to zero, (4.4) naively shows that the Casimir

force tends to the Casimir force for massless scalar fields [15]. To be more careful, we need

to discuss the cases where the field assumes Dirichlet boundary conditions and Neumann

boundary conditions on the surrounding walls [0, L] × ∂Ω × N n separately. If the field

assumes Dirichlet boundary conditions on the wall [0, L] × ∂Ω × N n, then the Dirichlet

eigenvalues ω2
Ω,D;j are all nonzero. In this case, we can immediately set m = 0 in (4.4) and

obtain the Casimir force for massless scalar field. However, if the field assumes Neumann

boundary conditions on the wall [0, L] × ∂Ω × N n, there is exactly one zero Neumann

eigenvalue ω2
Ω,N ;0. In this case, there are κ pairs of (j, l) such that ω2

Ω,N ;j + ω2
N ;l = 0.

Separating the sum over (j, l) ∈ JN×Ñ in (4.4) as a sum over those (j, l) with ω2
Ω,N ;j+ω

2
N ;l =

0 and those (j, l) with ω2
Ω,N ;j +ω2

N ;l 6= 0, we find that the we can immediately set m = 0 in

the latter sum to obtain the contribution of the modes with ω2
Ω,N ;j+ω

2
N ;l 6= 0 to the Casimir

force due to massless scalar field. For the sum over (j, l) with ω2
Ω,N ;j + ω2

N ;l = 0 given by

−(−1)2ακT

∞
∑

p=−∞

√

m2 + (2πpT )2

exp
(

2a
√

m2 + (2πpT )2
)

− (−1)2α
, (4.13)

we have to be careful when taking the massless limit for the term with p = 0. Using the

fact that
x

ex − 1
= 1 +O(x),

x

ex + 1
= O(x) as x→ 0,
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we find that the massless limit of (4.13) is given by

κ







−|2α− 1| T
2a

+ 4πT 2
∞
∑

p=1

(−1)2α−1p

exp(4πpTa) − (−1)2α







. (4.14)

Except for the factor κ, this is the finite temperature Casimir force between a pair of

parallel plates in (1+1)-dimensional Minkowski spacetime due to massless scalar field

with Dirichlet or Neumann boundary conditions on both plates (for α = 0 or 1) and

with Dirichlet boundary condition on one plate and Neumann boundary condition on the

other plate (for α = 1/2) (see [50]). As in [50], the Casimir force due to the modes with

ω2
Ω,N ;j + ω2

N ;l = 0 (4.14) has an alternative expression given by

κ

(

− π

24a2
− πT 2

6
+
π

a2

∞
∑

k=1

k

exp
(

πk
Ta

)

− 1

)

, if α = 0, 1; (4.15)

and

κ









π

48a2
− πT 2

6
+
π

a2

∞
∑

k=1

k + 1
2

exp

(

π(k+ 1
2)

Ta

)

− 1









, if α =
1

2
. (4.16)

The first term in (4.15) and (4.16) give the respective zero temperature Casimir force. No-

tice that in contrast to the massive case where the force decays exponentially, they decay in

the order 1/a2 when a is large. This is a long range force which is the subject of study in the

context of electromagnetic fields in the recent work [51]. At finite temperature, (4.14) shows

that this long range force is present if and only if α 6= 1/2, i.e., if and only if the boundary

conditions assumed on the two plates and the walls of the cylinder are both Neumann con-

ditions. In this case, the long range force is of order T/a. From this analysis, we find that

long range force may exist only in the massless case when Neumann boundary conditions

are assumed on the wall of the cylinder and the two plates or when the temperature is zero

and Dirichlet boundary conditions are assumed on the two plates. The transition from

massless to massive field will change the nature of the force from long range to short range.

To investigate the dependence of the Casimir force F∞
Cas(a) on the size R of the cross

section Ω, we rewrite ωΩ,∗;j as ω′
Ω,∗;j/R, where the re-scaled frequency ω′

Ω,∗;j is independent

of the size R of the cross section Ω. Using the same argument about the dependence of

the Casimir force on mass, we see that if α = 0 or 1, the Casimir force increases when the

size R increases. The asymptotic behaviors of the Casimir force when the plate separation

a is much smaller than the size R of the cross section Ω is derived in appendix B. We read
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from (B.2) and (B.5) that if a≪ R, then if aT ≫ 1,

F∞
Cas(a)∼

T

a
√
π

d1−1
∑

i=0

cΩ/R,∗;i

(

R

a

)d1−i−1 ∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

e2πikα

{





a
√

ω2
N ;l+(2πpT )2+m2

k





d1−i

2

×K d1−i

2

(

2ka
√

ω2
N ;l + (2πpT )2 +m2

)

− 2

(

a
√

ω2
N ;l + (2πpT )2 +m2

)

d1+2−i

2

k
d1−2−i

2

×K d1+2−i

2

(

2ka
√

ω2
N ;l + (2πpT )2 +m2

)

}

+O

(

(

R

a

)−1
)

,

(4.17)

and if aT ≪ 1,

F∞
Cas(a) ∼− 1

a2

d1−1
∑

i=0

cΩ/R,∗;i

(

R

a

)d1−1−i
{

1

2π

∞
∑

k=1

e2πikα
∞
∑

l=0

[

(d1−i)





a
√

ω2
N ;l+m

2

k





d1+1−i

2

×K d1+1−i

2

(

2ka
√

ω2
N ;l+m

2
)

+2

(

a
√

ω2
N ;l+m

2
)

d1+3−i

2

k
d1−1−i

2

K d1−1−i

2

(

2ka
√

ω2
N ;l+m

2
)

]

− 2
d1−i

2 π
3
2 (aT )

d1−i−2
2

∞
∑

k=0

∞
∑

l=0

∞
∑

p=1

(k+α)2

(

√

[π(k+α)]2+(aωN ;l)2+(am)2

p

)

d1−i−2
2

×K d1−i−2

2

(

p

Ta

√

[π(k + α)]2 + (aωN ;l)2 + (am)2
)

+
(2aT )

d1−i+1
2

2π

∞
∑

l=0

∞
∑

p=1





a
√

ω2
N ;l +m2

p





d1−i+1
2

K d1−i+1
2

( p

T

√

ω2
N ;l +m2

)

}

+O

(

(

R

a

)−1
)

.

(4.18)

Here cΩ/R,∗;i are the heat kernel coefficients of the Laplace operator with Dirichlet (∗ = D)

or Neumann (∗ = N) boundary conditions on Ω/R. Notice that when r ≪ a ≪ R, the

large–R non-vanishing terms of the Casimir force can be written as a polynomial of order

d1 − 1 in R with coefficients depending on the geometric invariants cΩ,∗;i of Ω, and Bessel

series that depend on the geometry of the internal manifold N n, and the plate separation

a. From these expressions, it is easy to read that if the mass m is also very large, the

Casimir force decays exponentially. In the case the mass m is small, or more precisely if

am≪ 1 ≪ Rm, we obtain from (B.4) and (B.5) that if α = 0 or 1,

F∞
Cas(a)∼

κT

2
√
πa

h

d1
2

i

∑

j=1

cΩ/R,∗;d1−2j

(

R

a

)2j−1
{

1

2

(−1)j

j!
(am)2j

(

log
(am

2π

)2
+2−ψ (j+1)−ψ(1)

)
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+
√
π

j−1
∑

q=0

(−1)q

q!
(am)2q(2q − 2j + 1)π2j−2q−1Γ

(

−j +
1

2
+ q

)

ζR(−2j + 1 + 2q)

}

+
κT

2
√
πa

h

d1−1
2

i

∑

j=0

cΩ/R,∗;d1−2j−1

(

R

a

)2j

×
{

−√
π

(−1)j

j!
(am)2j − 1

2
Γ

(

−j − 1

2

)

(am)2j+1

+
√
π

j−1
∑

q=0

(−1)q

q!
(am)2q(2q − 2j)π2j−2qΓ (−j + q) ζR(−2j + 2q)

}

+
T√
πa

d1−1
∑

i=0

cΩ,∗;i

(

R

a

)d1−1−i d1+1−i
∑

q=0

(−1)q

q!
(am)2q

∞
∑

k=1

∑

(l,p)∈Ñ×Z

ω2
N ;l+(2πpT )2 6=0

×
{





a
√

ω2
N ;l + (2πpT )2

k





d1−i−2q

2

K d1−i−2q

2

(

2ka
√

ω2
N ;l + (2πpT )2

)

− 2

(

a
√

ω2
N ;l + (2πpT )2

)

d1+2−i−2q

2

k
d1−2−i−2q

2

K d1+2−i−2q

2

(

2ka
√

ω2
N ;l + (2πpT )2

)

}

, (4.19)

if aT ≫ 1; and

F∞
Cas(a)∼

κ

4πa2

h

d1+1
2

i

∑

j=1

cΩ/R,∗;d1+1−2j

(

R

a

)2j−2
{

1

2

(−1)j

j!
(am)2j

(

log
(am

2π

)2
+2−ψ(j+1)−ψ(1)

)

+
√
π

j−1
∑

q=0

(−1)q

q!
(am)2q(2q − 2j + 1)π2j−2q−1Γ

(

−j +
1

2
+ q

)

ζR(−2j + 1 + 2q)

}

+
κ

4πa2

h

d1
2

i

∑

j=0

cΩ/R,∗;d1−2j

(

R

a

)2j−1
{

−√
π

(−1)j

j!
(am)2j − 1

2
Γ

(

−j − 1

2

)

(am)2j+1

+
√
π

j−1
∑

q=0

(−1)q

q!
(am)2q(2q − 2j)π2j−2qΓ (−j + q) ζR(−2j + 2q)

}

− 1

2πa2

d1−1
∑

i=0

cΩ,∗;i

(

R

a

)d1−1−i d1+1−i
∑

q=0

(−1)q

q!
(am)2q

∞
∑

k=1

∑

l∈Ñ

ω2
N ,l

6=0

×
{

(d1−i−2q)
(ωN ;l

k

)

d1+1−i−2q

2
K d1+1−i−2q

2

(2kaωN ;l)+2
ω

d1+3−i−2q

2
N ;l

k
d1−1−i−2q

2

K d1−1−i−2q

2

(2kaωN ;l)

}

(4.20)

if T = 0. The omitted terms goes to zero when am → 0 or R/a → ∞. Notice that these

asymptotic behaviors contain logarithmic terms in am which goes to zero when the mass

m approaches zero. From (4.19) and (4.20), we find that when m is small, then as a→ 0+,
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the leading order term of the Casimir force is given by

F∞
Cas(a) ∼ −(d1 − 1)Γ

(

d1

2

)

ζR(d1)
Vol(Ω)

(4π)
d1
2

κT

ad1+1
, if aT ≫ 1,

and

F∞
Cas(a) ∼ −d1Γ

(

d1 + 1

2

)

ζR(d1 + 1)
Vol(Ω)

(4π)
d1+1

2

κ

ad1
, if aT ≪ 1,

respectively, which are independent of the mass m. This shows that when am ≪ 1, the

mass correction to the Casimir force is not significant.

If d1 = 3 and α = 0 or 1, (4.19) and (4.20) give respectively

F∞
Cas(a) ∼κT

{

−
cΩ/R,∗;0R

2

2a3
ζR(3) −

π
3
2 cΩ/R,∗;1R

12a2
−
cΩ/R,∗;2

2a

+
m2cΩ/R,∗;0R

2

2a
−
m2cΩ/R,∗;1R

4
√
π

log(am)2
}

+O(a0)

as r ≪a→ 0+

(4.21)

if T ≫ 1, and

F∞
Cas(a) ∼κ

{

−
π3cΩ/R,∗;0R

2

120a4
−
cΩ/R,∗;1R

4
√
πa3

ζR(3) −
πcΩ/R,∗;2

24a2
+
m2cΩ/R,∗;1R

4
√
πa

−
cΩ/R,∗;2

8π
m2 log(am)2 +

m4cΩ/R,∗;0R
2

16π
log(am)2

}

+O(a0)

as r ≪a→ 0+,

(4.22)

if T ≪ 1. When Ω = [0, L2]× [0, L3] is a rectangle, (4.22) gives the correct behavior of the

Casimir force when a≪ 1 which was derived in [44].

For the influence of the extra dimensions, we rewrite ωN ;l as ω′
N ;l/r, where the re-

scaled frequency ω′
N ;l is independent of the size r of the extra dimensions N n. We find

from each of the formulas and asymptotic expansions for the Casimir force F∞
Cas(a) derived

above that, as the size r is very small compared to the plate separation a, the terms with

nonzero ω2
N ;l contribute Casimir force that are exponentially small. In the limit the internal

manifold N n vanishes, i.e. r → 0+, only the κ terms corresponding to ω2
N ;l = 0 remain and

they give κ times the Casimir force in (d1 + 1)-dimensional Minkowski spacetime. In other

words, if κ = 0, the Casimir force goes to zero in the limit of vanishing internal space. This

is definitely not a desired physical situation. The situation that is of physical interest is

the recovery of the Casimir force in (d1 +1)-dimensional Minskowski spacetime in the limit

of vanishing extra dimensions, or equivalently κ = 1. This happens in particular when N n

has zero scalar curvature or when ξ = 0 (minimal coupling) and N n is connected. In this

case, (4.4) shows that the presence of extra dimensions enhances the Casimir effect. In case

α = 0 or 1, the expression (4.4) shows that the magnitude of the Casimir force becomes

larger when the size of the internal manifold r is larger.
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When the size r of the internal manifold N n becomes comparable to the plate separa-

tion a, the correction to the Casimir force in (d1 +1)-dimensional Minskowki spacetime due

to the extra dimensions (i.e. the contributions from the terms with ω2
N ;l 6= 0) can become

substantial and it depends on the geometry of the internal manifold N n.

4.2 The Casimir force density acting on a pair of infinite parallel plates

In this section, we consider the limit where the size R of the cross section Ω goes to infinity,

which is tantamount to two parallel plates in a (d1 + 1)-dimensional Minkowski spacetime

Md1+1, with an n-dimensional internal manifold compactified to N n at every point of

Md1+1. In this case, we should consider the Casimir force density F‖
Cas(a) on the plates

x1 = 0 and x1 = a which is defined as the limit

F‖
Cas(a) = lim

R→∞

F∞
Cas(a)

Vol(Ω)
= lim

R→∞

F∞
Cas(a)

Rd1−1
.

From (4.17) and (4.18), we observe that when R is large, the leading term of F∞
Cas(a) is

of order Rd1−1 coming from the term with i = 0. All the remaining terms are of order

smaller than Rd1−1. Using the fact that cΩ/R,∗;0 = 1/(2
√
π)d1−1, we obtain immediately

the following high and low temperature expansions for the Casimir force density F‖
Cas(a):

F‖
Cas(a) =

1

2d1−1π
d1
2

T

ad1

∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

e2πikα





a
√

ω2
N ;l + (2πpT )2 +m2

k





d1
2

×K d1
2

(

2ka
√

ω2
N ;l + (2πpT )2 +m2

)

− 1

2d1−2π
d1
2

T

ad1

∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

e2πikα

(

a
√

ω2
N ;l + (2πpT )2 +m2

)

d1+2
2

k
d1−2

2

×K d1+2

2

(

2ka
√

ω2
N ;l + (2πpT )2 +m2

)

,

F‖
Cas(a) = − d1

2d1π
d1+1

2 ad1+1

∞
∑

k=1

∞
∑

l=0

e2πikα





a
√

ω2
N ;l +m2

k





d1+1
2

×K d1+1
2

(

2ka
√

ω2
N ;l +m2

)

− 1

2d1−1π
d1+1

2 ad1+1

×
∞
∑

k=1

∞
∑

l=0

e2πikα

(

a
√

ω2
N ;l +m2

)

d1+3
2

k
d1−1

2

K d1−1
2

(

2ka
√

ω2
N ;l +m2

)

+
(aT )

d1−2
2

2
d1−2

2 π
d1−4

2 ad1+1

∞
∑

k=0

∞
∑

l=0

∞
∑

p=1

(k+α)2

(

√

(π[k+α])2+(aωN ;l)2+(am)2

p

)

d1−2
2

×K d1−2
2

(

p

Ta

√

(π[k + α])2 + (aωN ;l)2 + (am)2
)
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− (aT )
d1+1

2

2
d1−1

2 π
d1+1

2 ad1+1

∞
∑

l=0

∞
∑

p=1





a
√

ω2
N ;l +m2

p





d1+1
2

K d1+1
2

( p

T

√

ω2
N ;l +m2

)

.

(4.23)

The first two terms in (4.23) give the zero temperature Casimir force density and it agrees

with the result obtained in [16]. Notice that since the Casimir force density F‖
Cas(a) is

derived as a limit of the Casimir force F∞
Cas(a), it follows that for a pair of infinite parallel

plates with Dirichlet or Neumann boundary conditions on both plates, the Casimir force

is attractive. For a pair of infinite parallel plates with Dirichlet boundary condition on one

plate and Neumann boundary condition on the other plate, the Casimir force is repulsive.

For either homogeneous or mixed boundary conditions, the magnitude of the Casimir force

is a decreasing function of the plate separation a, but it is enhanced by the presence of the

extra dimensions. If both the plates assume the same (Dirichlet or Neumann) boundary

conditions, the Casimir force density F‖
Cas(a) is also a decreasing function of mass. In the

high temperature regime, the leading term of the Casimir force is linear in temperature. In

the low temperature regime, the Casimir effect is dominated by the zero temperature term.

4.3 Special case

Here we consider the special case as in section 3.3, where the cross section of the cylinder

Ω is a rectangular region [0, L2]× . . .× [0, Ld1 ] and the internal manifold N n is an n-torus

T n — a product of n circles with radius r1, . . . , rn respectively. For simplicity, we only

consider the Casimir force F∞
Cas(a) acting on a rectangular piston moving freely inside a

semi-infinite long rectangular box when both the piston and the walls of the rectangular

box assume the same (Dirichlet or Neumann) boundary conditions. The result for the case

where they assume different boundary conditions can be obtained using (4.5). From (3.20)

and (4.2), we find that the left closed chamber contributes the Casimir force

F left
Cas(a;D/N) = − Σ̃1 − T

∑

j∈Nd1−1/Ñd1−1

∑
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Li

)2
+
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(
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)2
+m2 + (2πpT )2

)

− 1

,

and the right infinitely long chamber contributes

F right
Cas (D/N) = Σ̃1 = − [

∏n
l=1 rl]

2d1+1

d1−1
∑

i=0

(∓1)d1−i−1

π
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2

m
i+n+2

2

×
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



i
∏

j=1

Lσj





∑
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,l1,...,ln,p)∈Zi+n+1\{0}

(4.24)
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For Neumann boundary conditions, it is obvious that Σ̃1 is negative. Using (4.9), we can

rewrite Σ̃1 in the form (3.18), where the terms with p = 0 in (4.24) are the T -independent

terms correspond to the first two terms in (3.18). As is shown in appendix A, when T is

large, Σ̃1 is negative and dominated by a term proportional T d+1. Therefore, when T is

large, there is a large repulsive force due to the vacuum fluctuations of the scalar field in

the left chamber that tend to push the piston away from the closed end of the rectangular

box. However, the vacuum fluctuations of the field in the right chamber give rise to a larger

force in the opposite direction. The sum of these two forces is

F∞
Cas(a;D/N) = − T

∑

j∈Nd1−1/Ñd1−1
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)

− 1

,

(4.25)

which tends to move the piston towards the closed end of the rectangular box. The ex-

pression (4.25) shows that the Casimir force F∞
Cas(a;D/N) is exponentially small when any

of the parameters a,m, T is large or any of the parameters L2, . . . , Ld1 , r1, . . . , rn is small.

There are a few alternative expressions for the Casimir force F∞
Cas(a;D/N) which can be

used to study the behaviors of the Casimir force at other limits. Using the formula (4.10),

we find that if a and m are large and L2, . . . , Ld1 , r1, . . . , rn, T are small, the Casimir force

can be computed using the formula

F∞
Cas(a;D/N) =

1

2π
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In the zero temperature limit, we find that the zero temperature Casimir force is given by

F∞
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=
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This expression shows that the zero temperature Casimir force is exponentially small when

any of the parameters a,m is large or any of the parameters L2, . . . , Ld1 , r1, . . . , rn is small.

For the situation that we are more interested in, i.e., the case where ri ≪ a≪ Lj, 1 ≤ i ≤ n,

2 ≤ j ≤ d1, the Casimir force F∞
Cas(a;D/N) can be written as the sum of two terms, where

the first term
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(4.26)

is the dominating term, and the second term

− T
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decays exponentially when the area of the cross section L2 . . . Ld1 is large. The term S̃i

in (4.26) is equal to the sum

S̃i =
∑

2≤σ1<...<σi≤d1


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i
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j=1

Lσj



 .

The expressions (4.26) and (4.27) are suitable for investigating the high temperature be-

havior. The high temperature leading term is linear in T , which is equal to the sum of

the terms with p = 0. At low temperature, we have the following alternative expressions

for (4.26) and (4.27):

− 1

2d1

d1−1
∑

i=0

(∓1)d1−1−i S̃i

π
i+2
2

∑

l∈Zn

{

−
∞
∑

k=1









√

∑n
j=1

(

lj
rj

)2
+m2

ka









i+2
2

×K i+2
2



2ka

√

√

√

√

n
∑

j=1

(

lj
rj

)2

+m2



+ 2
∞
∑

k=1

(

∑n
j=1

(

lj
rj

)2
+m2

)
i+4
4

(ka)
i
2

×K i+4
2



2ka

√

√

√

√

n
∑

j=1

(

lj
rj

)2

+m2



+ (2T )
i+2
2

∞
∑

p=1









√

∑n
j=1

(

lj
rj

)2
+m2

p









i+2
2

×K i+2
2





p

T

√

√

√

√

n
∑

j=1

(

lj
rj

)2

+m2



− 4π
5
2 (2T )

i−1
2

a3

∞
∑

p=1

∞
∑

k=1

k2









√

(

πk
a

)2
+
∑n

j=1

(

lj
rj

)2
+m2

p









i−1
2

×K i−1
2





p

T

√

√

√

√

(

πk

a

)2

+
n
∑

j=1

(

lj
rj

)2

+m2





}

(4.28)

and
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The p = 0 terms in (4.28) and (4.29) give the zero temperature Casimir force. In the

limit the cross section is large, i.e. Li → ∞ for i = 2, . . . , d1, we find from the term with

i = d1 − 1 in (4.26) and (4.28) that the Casimir force density acting on a pair of infinite

parallel plates is given by
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or alternatively
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Figure 2. Left: The Casimir force F∞

Cas(a) as a function of r/a for different values of m and T .

Right: The Casimir force F∞

Cas(a) as a function of temperature for different values of r/a and m.
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Figure 3. The Casimir force F∞

Cas(a) as a function of mass for different values of r/a and T .
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In figures 2 and 3, we show graphically the behavior of the Casimir force F∞
Cas(a) acting

on two parallel plates embedded in an infinitely long rectangular cylinder in a (4 + 1)-

dimensional background spacetime with an extra dimension curled up to a circle of radius
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r. We assume that the massive scalar field is subjected to Dirichlet boundary conditions on

the walls of the cylinder and the two plates. Figure 2(a) shows the variations of the Casimir

force as a function of the size r of the extra dimension, or more precisely, the ratio of the size

r to the plate separation a. It shows that the magnitude of the Casimir force is increased

if the size of the extra dimension is increased. When r/a > 0.4, the existence of extra

dimension can contribute substantially to the Casimir force. Figure 2(b) shows that the

magnitude of the Casimir force is an increasing function of temperature. For a = 6µm, the

graph shows that the Casimir force depends linearly on temperature when T > 200K. Fig-

ure 3 shows that the magnitude of the Casimir force decreases when the mass m increases.

5 Conclusion

In this paper, we have investigated the Casimir effect for massive scalar field with general

curvature coupling in (d+1)-dimensional spacetime with n = d− d1 extra dimensions. We

consider the cases that the field assumes Dirichlet or Neumann boundary conditions on

two parallel plates embedded in an infinitely long cylinder. We derive a general expression

for the renormalized Casimir energy that vanishes in the infinite mass limit. A lots of the

properties of the Casimir force are similar to the massless case. In particular, if the field

assumes Dirichlet or Neumann boundary conditions on both plates, then the Casimir force

acting on the plates are attractive. If the field assumes Dirichlet boundary condition on

one plate and Neumann boundary condition on the other plate, then the Casimir force is

repulsive. Passing from massless to massive, we find that the strength of the Casimir force

is reduced if both plates assume the same boundary conditions.

For the influence of the extra dimensions, we find that the presence of extra dimensions

enhances the Casimir effect. When the size of the internal manifold shrinks to zero, one

obtains the Casimir force in the (d1+1)-dimensional spacetime if an only if a certain elliptic

operator on the internal manifold has exactly one zero mode. This happens in particular

in the case of minimal coupling or zero scalar curvature.

For the extension of this work, it would be interesting to consider the general case of

Robin boundary conditions as in [16]. This will be important for considering the finite

temperature Casimir effect in the braneworld model especially for the radion field stabi-

lization mechanism, as has been shown in [16] for the zero temperature case. The work

along this direction will be reported elsewhere.
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A High temperature asymptotic behavior of Σ̃1

In this section, we consider the asymptotic behavior of Σ̃1 (3.18) at high temperature. The

first two terms in (3.18) are independent of T . For the third term, we have

− T

π

∑

j∈J∗

∞
∑

l=0

∞
∑

p=1

√

ω2
Ω,∗;j + ω2

N ;l +m2

p
K1





p
√

ω2
Ω,∗;j + ω2

N ;l +m2

T





= − 1

4π

∫ ∞

0

∑

j∈J∗

∞
∑

l=0

∞
∑

p=1

exp

{

−
ω2

Ω,∗;j + ω2
N ;l +m2

t
− tp2

4T 2

}

dt

= − 1

4π

∫ ∞

0

∞
∑

p=1

exp

{

− tp2

4T 2

}

1

2πi

∫ c+i∞

c−i∞
Γ(z)tzζΩ×N ,∗(z;m)dzdt (A.1)

= − 1

4π

1

2πi

∫ c+i∞

c−i∞
Γ(z)Γ(z + 1)(2T )2z+2ζR(2z + 2)ζΩ×N ,∗(z;m)dz

∼ − 1

4π

d−1
∑

i=0

Γ

(

i+ 2

2

)

ζR(i+ 2)cΩ×N ,∗;d−1−i(m)(2T )i+2 +O(T ).

B The asymptotic behavior of the Casimir force F ∞

Cas
(a) in different lim-

its

In this section, we derive the asymptotic behavior of the Casimir force F∞
Cas(a) in dif-

ferent limits. We only consider the case where α = 0 or 1. The case α = 1/2 can be

derived analogously.

First we consider the asymptotic behavior when r < a < R. In the high temperature

regime, it follows from (4.8) that

F∞
Cas(a) =

T

2
√
π

∂

∂a

{

a

∫ ∞

0
t−

1
2

1

2πi

∫ c+i∞

c−i∞
Γ(z)tzζΩ,∗(z)

∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

× exp

(

−
ω2
N ;l + (2πpT )2 +m2

t
− tk2a2

)

dzdt

}

∼ T

2
√
π

∞
∑

i=0

cΩ,∗;i
∂

∂a

{

a

∫ ∞

0
t

d1−i

2
−1

∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

× exp

(

−
ω2
N ;l + (2πpT )2 +m2

t
− tk2a2

)

dt

}

,

(B.1)

where ζΩ,∗(z) is the zeta function

ζΩ,∗(s) =
∑

j∈J∗

ω−2s
Ω,∗,j,
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and cΩ,∗;i is the heat kernel coefficient of the Laplace operator with Dirichlet/Neumann

boundary conditions on Ω, i.e.,

∑

j∈J∗

e−tω2
Ω,∗;j =

M−1
∑

i=0

cΩ,∗;it
i−d1+1

2 +O
(

t
M−d1+1

2

)

as t→ 0+.

In terms of the measure R of the size of Ω,

cΩ,∗;i = Rd1−i−1cΩ/R,∗;i ∝ Rd1−i−1.

Therefore when r < a < R,

F∞
Cas(a)

∼ T

a
√
π

M−1
∑

i=0

cΩ/R,∗;i

(

R

a

)d1−i−1 ∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

{





a
√

ω2
N ;l + (2πpT )2 +m2

k





d1−i

2

×K d1−i

2

(

2ka
√

ω2
N ;l + (2πpT )2 +m2

)

− 2

(

a
√

ω2
N ;l + (2πpT )2 +m2

)

d1+2−i

2

k
d1−2−i

2

K d1+2−i

2

(

2ka
√

ω2
N ;l + (2πpT )2 +m2

)

}

+O

(

(

R

a

)d1−M−1
)

.

(B.2)

This expansion only gives the behavior when am ≫ 1. For the expansion when am ≪ 1,

we go back to (B.1) and consider the expansion of

T(i; a) =
∂

∂a

{

a

∫ ∞

0
t

d1−i

2
−1

∞
∑

k=1

∞
∑

l=0

∞
∑

p=−∞

exp

(

−
ω2
N ;l + (2πpT )2 +m2

t
− tk2a2

)

dt

}

(B.3)

when am ≪ 1. Recall that there are κ zero eigenvalues ω2
N ;l. We write (B.3) as the sum

of T1(i; a) and T2(i; a), where

T1(i; a) = κ
∂

∂a

{

a

∫ ∞

0
t−

i+2−d1
2

∞
∑

k=1

exp

(

−m
2

t
− tk2a2

)

dt

}

and

T2(i; a)=
∂

∂a























a

∫ ∞

0
t

d1−i

2
−1

∞
∑

k=1

∑

(l,p)∈Ñ×Z

ω2
N ;l+(2πpT )2 6=0

exp

(

−
ω2
N ;l+(2πpT )2+m2

t
−tk2a2

)

dt























.
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For the term T2(i; a), we can use the Taylor expansion of e−m2/t to write

T2(i; a) =2ai−d1

∞
∑

q=0

(−1)q

q!
(am)2q

{





a
√

ω2
N ;l + (2πpT )2

k





d1−i−2q

2

×K d1−i−2q

2

(

2ka
√

ω2
N ;l + (2πpT )2

)

− 2

(

a
√

ω2
N ;l + (2πpT )2

)

d1+2−i−2q

2

(k)
d1−2−i−2q

2

K d1+2−i−2q

2

(

2ka
√

ω2
N ;l + (2πpT )2

)

}

.

For T1(i; a), notice that when s is large enough, and am≪ 1,

P(s; a) =

∫ ∞

0
t−s

∞
∑

k=1

exp

(

−m
2

t
− tk2a2

)

dt =

∫ ∞

0
ts−2

∞
∑

k=1

exp

(

−tm2 − k2a2

t

)

dt

= − 1

2
Γ(s− 1)m−2s+2 +

√
π

2a
Γ

(

s− 1

2

)

m−2s+1

+

√
π

a

∞
∑

q=0

(−1)q

q!
m2qΓ

(

s− 1

2
+ q

)

ζR(2s − 1 + 2q)
(π

a

)−2s+1−2q
.

(B.4)

By analytic continuation, this formula holds for all s. From these, we find that when r <

a < R and am≪ 1 ≪ Rm, the Casimir force F∞
Cas(a) has the asymptotic expansion (4.19).

In the low temperature regime, we use (3.8) to transform (4.10) to

F∞
Cas(a) =

1

4π

∂

∂a

{

a

∫ ∞

0

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

exp

{

−
ω2

Ω,∗;j + ω2
N ,l +m2

t
− tk2a2

}

dt

+ 2
√
π

∫ ∞

0
t−

1
2

∞
∑

k=1

∑

j∈J∗

∞
∑

l=0

∞
∑

p=1

× exp

{

−1

t

(

[

πk

a

]2

+ ω2
Ω,∗;j + ω2

N ,l +m2

)

− t
( p

2T

)2
}

dt

}

− 1

4π

∫ ∞

0

∑

j∈J∗

∞
∑

l=0

∞
∑

p=1

exp

{

−
ω2

Ω,∗;j + ω2
N ,l +m2

t
− t
( p

2T

)2
}

dt.

Using the same method as we derive (B.2), we find that

F∞
Cas(a) ∼ − 1

a2

∞
∑

i=0

cΩ/R,∗;i

(

R

a

)d1−1−i
{

1

2π

∞
∑

k=1

∞
∑

l=0

[

(d1 − i)





a
√

ω2
N ;l +m2

k





d1+1−i

2

×K d1+1−i

2

(

2ka
√

ω2
N ;l +m2

)

+ 2

(

a
√

ω2
N ;l +m2

)

d1+3−i

2

k
d1−1−i

2

K d1−1−i

2

(

2ka
√

ω2
N ;l +m2

)

]
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− 2
d1−i

2 π
3
2 (aT )

d1−i−2

2

∞
∑

k=1

∞
∑

l=0

∞
∑

p=1

k2

(

√

(πk)2 + (aωN ;l)2 + (am)2

p

)

d1−i−2
2

×K d1−i−2

2

(

p

Ta

√

(πk)2+(aωN ;l)2+(am)2
)

+
(2aT )

d1−i+1
2

2π

∞
∑

l=0

∞
∑

p=1





a
√

ω2
N ;l+m

2

p





d1−i+1
2

×K d1−i+1

2

( p

T

√

ω2
N ;l +m2

)

}

. (B.5)
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